
© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 1

Software Engineering:
Fact & Fancy

Brian Lawrence
Coyote Valley Software

brian@coyotevalley.com
www.coyotevalley.com

(408) 578-9661

SSQA
March 2006

© 2006 by Brian Lawrence. All Rights Reserved.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 2

A Little Joke

Abraham Lincoln:
“If you call a tail a leg, how many legs

does a dog have?”

Abraham Lincoln:
“If you call a tail a leg, how many legs

does a dog have?”

“Four!
Just because you call a tail a leg, that

doesn’t make it one.”

“Four!
Just because you call a tail a leg, that

doesn’t make it one.”

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 3

Routine vs. Non-Routine
Tasks

• Routine tasks are ones where we know how
to do them before starting, and know that for
a specific amount of effort, we will get a
corresponding amount of progress.

• Non-Routine tasks are ones where while we
may know how to do them, we don’t exactly
know how much time or effort we will need to
expend to complete them.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 4

A Brief Case Study

• Form into groups of no more than four
people. Pretend you are interviewing to work
on a project as a group.

• From among the group, choose one person
to serve as an observer.

• Observers – Come up to the front and I’ll give
you your instructions.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 5

A Brief Case Study
- Routine Task

• On a piece of paper, draw nine dots in 3 rows of 3, so
that the dots are evenly spaced and both vertically
and horizontally symmetric. E.g.:

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 6

A Brief Case Study
- Non-Routine Task

• Connect the nine dots using as few
contiguous straight lines as possible.

• The group with the fewest lines wins*.

* This problem has been solved many ways. To be competitive, you probably need to use fewer than four lines.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 7

A Brief Case Study

One of several solutions.One of several solutions.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 8

SE Activities
RoutineCharters
RoutineLife Cycles
BothInspection
Non-RoutineRequirements
Non-RoutineArchitecture
Can be BothProject Mgmt

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 9

SE Activities
Risk Mgmt Non-Routine

CM Routine

Testing Non-Routine

QA Routine

Appraisals Routine

Retrospectives Can be Both

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 10

Fact or Fancy?

Software Engineering projects can be
repeatable.

Software Engineering projects can be
repeatable.

• This is a fundamental premise of well-known,
widely-accepted SE process models (e.g.
CMM).

• Fancy!
• Non-routine tasks cannot be made

repeatable.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 11

Fact or Fancy?
Software project sponsors will always want
precise and accurate predictions for cost and

schedule.

Software project sponsors will always want
precise and accurate predictions for cost and

schedule.

• Fact!
• Unfortunately, they can’t always get precise

and accurate predictions.
• Unpredictable projects can still be successful.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 12

Fact or Fancy?

Software Engineering is primarily
technological in nature.

Software Engineering is primarily
technological in nature.

• Fancy!
• Most of the challenges are social, not

technical.
• This notion is NOT widely supported by the

SE literature.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 13

Fact or Fancy?

There are some very solid practices in Software
Engineering.

There are some very solid practices in Software
Engineering.

• Fact!
• There are several SE practices I would

personally always recommend in any
software project.

• They may take many forms.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 14

Fact or Fancy?

Measurement practices in Software
Engineering are safe and effective.

Measurement practices in Software
Engineering are safe and effective.

• Fancy!
• In my experience, most measures have done

more harm than good.
• There are plenty of people promoting

measurement who are apparently blissfully
oblivious of the real effects of measurement.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 15

Fact or Fancy?

Software Engineering is fact, a true
engineering discipline.

Software Engineering is fact, a true
engineering discipline.

• Fancy!
• At best, SE is not much more than a Craft.
• Much of the SE literature likes to pretend that

it is true engineering.
• See Mary Shaw’s explanation.

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 16

References

Adams, James, Conceptual Blockbusting, Addison-
Wesley, 1986

DeMarco, Tom, “Mad About Measurement,” Why Does
Software Cost So Much?, Dorset House, 1995

Kaner, Cem, “Rethinking Software Measurement,”
STQE, March 2000, Vol. 2, No. 2.

Glass, Robert, Software Runaways, Prentice-Hall, 1998
Shaw, Mary, “Three Patterns that help explain the

development of Software Engineering,” 1997

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 17

Readings
• Brooks, Fred, The Mythical Man-Month, 20th Anniversary ed. Addison-

Wesley, 1995.
• DeMarco, Tom, and Tim Lister, Waltzing With Bears, Dorset House,

2003
• Gause, Don, and Jerry Weinberg, Exploring Requirements, Dorset

House, 1989.
• Kaner, Cem, Jack Falk, and Hung Nguyen, Testing Computer

Software, Wiley, 1993
• Kerth, Norm, Project Retrospectives, Dorset House 2001.
• McConnell, Steve. Rapid Development. Microsoft Press. 1996.
• Rechtin, Eberhart, and Mark Maier, The Art of Systems Architecting,

CRC Press, 1997
• Royce, Winston W. “Managing the Development of Large Software

Systems,” IEEE Software. (April 1970): 118-127.
• III, “Immunizing Your Project Against Foreseeable Failure,” STQE

Magazine, Jan. 2000.
• Shaw, Mary and David Garlan. Software Architecture: Perspectives on

an Emerging Discipline. Prentice Hall. 1996
• Wiegers, Karl, Peer Reviews in Software, Addison-Wesley, 2001
• Weinberg, Jerry, Quality Software Management, 4 Volume Trilogy,

Dorset House, 1991-1997

© by Brian Lawrence, 2006 Software Engineering: Fact & Fancy • X1 18

Acknowledgement

The following colleagues were cheerfully
volunteered to serve as reviewers of
this presentation:

• Rick Brenner – Chaco Canyon Consulting
• III - Systemodels
• Judah Mogilensky – Process Enhancement Partners
• SuZ Garcia – Software Engineering Institute

	Software Engineering:Fact & Fancy
	A Little Joke
	Routine vs. Non-RoutineTasks
	A Brief Case Study
	A Brief Case Study- Routine Task
	A Brief Case Study- Non-Routine Task
	A Brief Case Study
	SE Activities
	SE Activities
	Fact or Fancy?
	Fact or Fancy?
	Fact or Fancy?
	Fact or Fancy?
	Fact or Fancy?
	Fact or Fancy?
	References
	Readings
	Acknowledgement

